Hero image

524Uploads

220k+Views

119k+Downloads

Make a paper house
IETEducationIETEducation

Make a paper house

(0)
In this activity learners will design, make and assemble a fold out pop-up structure that shows a self-contained, four room dwelling. This activity could be used as a main lesson activity to teach learners about the design of folding structures using graphic materials; alternatively, it could be used as an introduction to designing for a client, where the learners could be given a target group such as wheelchair users or a young family. This could also be used as one of several activities within a wider scheme of learning focussing on structures and Design for Living. Resources required: Scissors Paper or Card Glue Rulers Pens, coloured pencils or paint Paperclips Optional: three pre-made rooms Optional: a pre-made assembled example Download our activity sheet and other related resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Make a tie dye blanket
IETEducationIETEducation

Make a tie dye blanket

(0)
In this hands-on design and technology project for KS3, students will unleash their creativity and artistic flair as they tie-dye picnic blankets. Through the fascinating art of tie-dyeing, they will explore colour combinations, patterns, and techniques, making their picnic blankets functional and uniquely stylish. Activity: Make a tie dye picnic blanket This activity is part of a series of free STEM resources created to enable students to enhance their understanding and proficiency in Design and Technology, Engineering, Science, and Mathematics, all while incorporating summer-related themes. This particular resource is perfect for the summer season and can be undertaken within a school setting or from the comfort of one’s home. Learners will produce samples for a picnic blanket using different tie-dyeing techniques to add visual interest. They will then produce a full-sized version using their favourite technique or design. This activity could be used as a main lesson to teach learners about dyeing techniques within textiles or as part of a wider scheme of learning covering manufacturing processes and finishing techniques. How long will this activity take to complete? This activity will take approximately 70-100 minutes to complete. Download the activity sheet below for a step-by-step guide on how to tie-dye a blanket that can be used during summer picnics! What materials will you need? Squeezy bottles; Fabric dye; Elastic bands/string; Plastic gloves; washing up bowl; Salt, if required. The engineering context Our clothing comes in a diverse array of colours to avoid monotony. Engineers and designers employ various finishing techniques on a wide range of materials, including textiles. Suggested learning outcomes By the end of this activity, students will be able to understand what is meant by tie-dyeing and its applications, they will be able to produce samples for picnic blankets using different tie-dyeing techniques, and they will be able to produce a full-size picnic blanket using tie-dyeing. Download the free activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a zip line
IETEducationIETEducation

How to make a zip line

(0)
Designing and making a zip line for a toy This is a project to build a model of a zip Line. It could be carried out in pairs but will work for individuals. It requires some space to complete successfully but can be executed both indoors and outdoors. This activity could be used as a main lesson activity to teach learners about the effect of gravity on a body falling in a controlled manner, friction or the practical application of trigonometry. Resources required: String or thin rope, 10m should be enough A ‘passenger’ for the zip line Paper clips or stiff wire Sticky tape A stopwatch or a stopwatch App on a phone A ruler or tape measure A protractor Some paper and a pen to take notes Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
How to make a Leonardo da Vinci bridge
IETEducationIETEducation

How to make a Leonardo da Vinci bridge

(0)
In this engaging design and technology project for KS2, students will build a model of the Leonardo da Vinci bridge where the parts are not joined together… This activity will teach learners about the use of simple construction techniques as they assemble a working, load-bearing bridge. The bridge can then be tested to destruction, which can help learners understand the forces that act on bridges and how to design them to be strong and stable. This activity can be used as a main lesson activity or as one of several activities within a wider scheme of learning about structures and Design for Living. It can be adapted to different age groups and abilities and can be used to teach a variety of concepts, such as forces, structures, and materials. Activity: How to make a Leonardo da Vinci bridge This resource is part of a set designed to help learners use seasonal themes to support the delivery of key topics in Design and Technology and Engineering. This resource is part of a group for the Summer and can be used in school or at home. It involves building a load-bearing bridge structure made up of simple members without any joining methods. This activity is aimed at the high end of Key Stage 2 and should be carried out in pairs or small groups, as a minimum of two pairs of hands are needed, along with some dexterity. How long will this activity take to complete? This activity will take about 60-90 minutes to complete. Teachers can download the activity sheet below for a detailed lesson plan. Parents can download the family activity for a step-by-step guide on how to help their children build a Leonardo Da Vinci bridge at home. The engineering context Using scale models is a development tool used in many areas of Engineering. Suggested learning outcomes By the end of this activity, students will understand how forces can act on parts of a structure to make it stand without extra support or joining methods, and they will look at the engineering work of Leonardo da Vinci. Download the free activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Build a popsicle stick catapult
IETEducationIETEducation

Build a popsicle stick catapult

(1)
Develop an understanding of levers and build a popsicle stick catapult from craft sticks with this free STEM lesson plan. This is an exciting and engaging way to learn about physics and engineering. With the right materials, build a simple yet effective catapult capable of launching chocolate eggs up into the air! This lesson plan is perfect for KS3 students and can be used as a fun one-off main activity to introduce levers. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource involves making a simple catapult which works as a lever to propel a chocolate or mini egg. This activity will take approximately 50 – 70 minutes to complete. Also included is a fun crossword using words from the activity to promote sticking learning. Tools/resources required Craft sticks (at least 7 per learner) Small elastic bands (at least 7 per learner, plus spares) A teaspoon (metal or plastic) Chocolate mini eggs (or similar) For the extension activity: Pencils (or similar, such as dowel rods) Elastic bands The engineering context Levers are one of the simplest machines and are used in many applications. These include pliers, scissors, brake pedals and wheels and axles. The principles of levers are also used in many applications when designing sports equipment, such as cricket bats, golf clubs and hockey sticks. Suggested learning outcomes After completing this Easter themed engineering resource students will be able to describe the three classes of lever and they will be able to make a structure. Download the free Build a popsicle stick catapult activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a sensor to test a waterlogged sports pitch
IETEducationIETEducation

Make a sensor to test a waterlogged sports pitch

(0)
Making a moisture sensor to check that a sports pitch is fit to play on In this engineering activity, designed for secondary school students, students will make and test a moisture sensor that referees can use to check the playability of a football pitch. This is one of a series of resources designed to allow learners to use the theme of the sport to develop their knowledge and skills in design and technology and engineering. This free resource focuses on making and testing a moisture sensor that referees can use to check the playability of the pitch. Activity introduction Your task is to make a waterlogging sensor that a referee can use to check whether the playing field is fit to play on. It should indicate when the pitch is too wet for play to safely take place. Follow the steps outlined in our free activity sheet to assemble your own moisture sensor circuit. Once the sensor is assembled place the moisture sensor in wet soil or grass to see if it works! After you have tested your moisture sensor circuit you can discuss with your teacher how successful the making of it has been. This activity will take approximately 50-80 minutes. What you will need A soldering iron, stand, sponge and mat/base Solder Moisture sensor circuit board A 9-volt battery and battery snap A 470-ohm, 1 kiloohm and 1.2 kiloohm resistor A transistor A 5 mm red LED A sticky pad The engineering context Sporting events require engineers of a wide range of disciplines to make sure that it runs smoothly and effectively. From structural engineers in charge of stadium design to textile engineers producing the players’ kits, the importance of engineers is huge. Electrical and electronic engineers need to have basic skills in circuit construction, including soldering components and testing electronic PCBs. Suggested learning outcomes By the end of this activity students will be able to make a moisture sensor circuit, they will be able to fit and solder components to a PCB and they will be able to test the moisture sensor circuit to check how well it works. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Design a sports wheelchair
IETEducationIETEducation

Design a sports wheelchair

(0)
Design a sports wheelchair for a Marathon race This activity is focused on the design of racing wheelchairs, but also develops understanding about the use of search engines. It considers the use of different search terms when using internet-based research using search engines and how this affects the outcomes of the search. The main activity involves designing a racing wheelchair considering key aspects to enhance its performance. The first London Marathon wheelchair race took place in 1983 in which 19 people took part with 17 completing the race. The winner, Gordon Perry, set a winning time of just over 3 hours and 20 minutes. With the advancements in engineering and technology since that date, wheelchair racing has come a long way, and in 2021, Marcel Hug won the London Marathon’s men’s wheelchair race setting a new course record with a time of just over 1 hour and 26 minutes! Activity info, teachers’ notes and curriculum links In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate the context on the internet and design a wheelchair for sports use. This activity could be used as a main lesson activity to develop skills in designing. It could also be used to teach learners about how to search the internet effectively to gain the information that is most applicable to their requirements. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Tools/resources required Pens, pencils and drawing instruments Computer access for internet searching The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Design a kit for a national sports team
IETEducationIETEducation

Design a kit for a national sports team

(0)
Consider smart or modern textile technologies when making a sports kit This resource focusses on designing a modern, stylish kit for a national team that will be playing at the football World Cup. This STEM activity is one of a series of resources designed to allow learners to use the theme of the football World Cup to develop their knowledge and skills in Design and Technology. Students will consider the colours used in different national flags and existing kits. They will then produce their own design for a national team of their choice, which makes use of smart or modern textiles technologies. Please do remember to share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Technology in sports
IETEducationIETEducation

Technology in sports

(0)
In this engineering activity, students will work in groups to share their knowledge of the use of technology in sport. They will each give a 60 second presentation about the topic to their group. This task is aimed at secondary school students and could be used as a starter activity with ‘Create a portable beep tester’ as the main activity. It is an ideal exercise for learners to both demonstrate and develop their knowledge of the topic of technology in sport, and share with their peers. Activity introduction This activity encourages learners to recall information, helps learners develop their oral presentation skills and encourages learners to work together to develop their knowledge. The teacher will first state to students that they will be demonstrating their existing knowledge of the use of technology in sport. They will also be developing their knowledge further by working with other learners in this group and listening to their presentations. Learners will be expected to work in teams of four. Their topic to talk about will be ‘the use of technology in sport’. Each learner in the group will, in turn, speak about this topic to their team for 60 seconds. They must try not to hesitate, deviate or repeat any information! Each group of four will write a summary of the main points learnt and read it out the class. This can be both in terms of knowledge of the topic and oral presentation techniques used. The engineering context Sports Technology is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at key stage 3. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the product integration skills of learners. Technology in sport This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions and set targets for future improvement. In this unit of learning, students will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels. Suggested learning outcomes By the end of this activity students will be able to describe how technology can be used in sport, present an oral presentation on the topic of technology in sport and they will be able to work as part of a team to develop their knowledge of technology in sport. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation.
Simulation versus real-world sports
IETEducationIETEducation

Simulation versus real-world sports

(0)
Form a constructive argument in a debate Virtual reality versus real-world sports tasks participants to form a constructive argument in a debate based on the question: ‘which is more important to our society - the development of the Nintendo Wii or encouraging more people to take up sport?’ Students research and evaluate the social, ethical, economic and health issues relating to simulation sports versus real-world sports. Form arguments for and against this topic and present the findings in a persuasive, coherent and focused argument. Tools/resources required Projector/Whiteboard Access to the internet for the research activity, or copies of appropriate pre-printed resources Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Please do share your classroom learning highlights with us @IETeducation
Sports logo developement
IETEducationIETEducation

Sports logo developement

(0)
A project to design a sports logo This STEM activity is inspired by the Olympics. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This free resource, aimed at secondary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided below. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want the logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? Then sketch their idea for a sports logo that meets the needs of both the brief and the design criteria given. Designs can be produced on the handout provided or on blank A4/43 paper. Once finished, ask three other people to suggest one improvement each to the design. Then select one of these suggested improvements and use it to update the design. This exercise should take approximately 50-60 minutes to complete. What you will need: Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggest learning outcome By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do remember to share your activity highlights with us @IETeducation
Sports logo design
IETEducationIETEducation

Sports logo design

(0)
Learn how to design a new logo for a sports team This STEM activity for kids is inspired by the Football World Cup but can be linked to any sporting event, the Olympics for example. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This exercise, aimed at primary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want to logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They will need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? This exercise should take approximately 50-60 minutes to complete. What you will need Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggested learning outcomes By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Backpack of the future (Secondary)
IETEducationIETEducation

Backpack of the future (Secondary)

(0)
In this KS3 activity, learners will make use of the theme of new and future technologies to design a futuristic backpack. This KS3 classroom activity could be used as a main lesson activity to teach about designing textile and graphics-based products in context, or the use of new technologies within designs. It could also be used as part of wider scheme of learning focussed on the design process. We’ve created this design teaching resource activity to support the delivery of key topics within design & technology (D&T) and engineering. Activity Learners will be introduced to the purpose of backpacks and how they are used across a wide range of different people. They will then produce a labelled sketch of their design idea to meet the given design brief and criteria. Learners can self or peer-assess their design work suggesting any improvements that could be made. Brief: Design the dream backpack of the future. Criteria: The design must include a way of comfortably wearing the backpack on the back, spaces to carry different items, colours that show personality and clever STEM gadgets and special tech that allow it to do incredible things. Considerations: Originality: How original is the idea? Feasibility: How feasible is it that the design can be turned into a real-life prototype? Creativity: How creative is the idea? Engineering: What engineering processes have been used in the design? ** Evaluation** Evaluate how well the design meets the design criteria: Which points does it meet? How? Which points does it not meet? Why? How could you improve your design? Possible extension Make a prototype or model of your backpack design Design a backpack for doctors or paramedics to carry their medical equipment Design a backpack for your favourite sports star The Engineering Context Engineers need to understand how materials and new technologies could be used to produce improved future product designs. For example, how sustainable materials, materials with improved properties or renewable energy could be used in backpack design in the future. Suggested learning outcomes This resource combines design and technology with engineering with the aim that the learners will be able to understand the purpose and different uses of backpacks and be able to design the backpack of the future. Download our activity sheet for free! All activity sheets and supporting resources are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as a classroom lesson plan and helpful PowerPoint presentation. Please do share your highlights with us @IETeducation.
Design a futuristic backpack (Primary)
IETEducationIETEducation

Design a futuristic backpack (Primary)

(0)
In this KS2 teaching resource activity learners will make use of the theme of new and future technologies to design a futuristic backpack. They will discuss the purpose of backpacks and why they are used. They will then produce a labelled sketch of their design idea to meet the given design brief and criteria. This KS2 classroom activity could be used as a main lesson activity to teach about designing textile and graphics-based products in context, or the use of new technologies within designs. It could also be used as part of wider scheme of learning focussed on the design process. Learners can self or peer-assess their design work suggesting any improvements that could be made. We’ve created this design teaching resource activity to support the delivery of key topics within design & technology (D&T) and engineering. Tools/supplies needed: Pens, pencils and coloured pencils A3 or A4 paper Brief - Design your dream backpack of the future. Criteria - Your design must include a way of comfortably wearing the backpack on the back, spaces to carry different items, colours that show your personality and clever STEM gadgets and special tech that allow you to do incredible things. Considerations: Originality: How original is the idea? Feasibility: How feasible the design, can it be turned into a real-life prototype? Creativity: How creative is the idea? Engineering: What engineering processes has been used in the design? Possible extension Make a prototype or model of your backpack design Design a backpack for doctors or paramedics to carry their medical equipment Design a backpack for your favourite sports star The Engineering Context Engineers need to understand how materials and new technologies could be used to produce improved future product designs. For example, how sustainable materials, materials with improved properties or renewable energy could be used in backpack design in the future. Suggested learning outcomes This resource combines design and technology with engineering with the aim that the learners will be able to understand the purpose and different uses of backpacks and be able to design the backpack of the future. Download our activity sheets for free! All activity sheets and supporting resources are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as a classroom lesson plan and helpful PowerPoint presentation. Please do share your highlights with us @IETeducation.
Prosthetic devices
IETEducationIETEducation

Prosthetic devices

(0)
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. Activity info,  teachers’ notes and curriculum links to KS3 science materials Using the short video ‘Bionic Limbs’, this activity is a quick, engaging introduction to a KS3 science materials lesson looking at the properties of modern materials. It encourages students to think about how technology is changing our society by generating their own ideas for prosthetic devices that they think will be realistic in the near future. There are takeaways for KS4 biology and KS3 product design. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheet and quiz for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation.
Engineer a stadium
IETEducationIETEducation

Engineer a stadium

(0)
Design the sports stadium of the future Millions of people from all over the world attend sporting events each year. Can your students design a stadium that will not only meet their needs, but also leaves a future legacy from the competition? In this fun STEM activity, learners will use the theme of sport to design a futuristic sports stadium. They will think about the main design considerations and requirements for the stadium. They will then produce annotated sketches of their idea and think about how it could be used after the event has taken place. This could be used as a one-off main lesson activity to develop designing and sketching skills. Alternatively, it could be used as a part of a wider scheme of work to develop designing and modelling skills in Design and Technology and Engineering. Download the activity sheets for free! And please do share your learning highlights and final creations with us on social media @IETeducation
Make international flag biscuits
IETEducationIETEducation

Make international flag biscuits

(0)
Create biscuits in national flag colours to celebrate an international sporting event Combine science, maths and design skills to celebrate the different nations taking part in international sporing events such as the Football World Cup and the Olympics. This fun STEM activity focusses on making and decorating biscuits with flags from the different nations. Students will consider the colours and shapes used in different national flags. They will then make and use icing to colour their biscuits in national flag colours from each teams. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions as a classroom lesson plan and PowerPoint presentation. And please do share your learning highlights and final creations with us on social media @IETeducation
Prosthetics imitating the human body
IETEducationIETEducation

Prosthetics imitating the human body

(0)
Explore the body parts that can be replaced with prosthetic devices With the constant advancement in materials and prosthetic technology, this engineering activity for kids explores different materials and their suitability in the use of prosthetics for different body parts. Students will gather data on different materials to create a presentation that can be used to discuss new materials and the part that they play in the development of prosthetic devices. This free STEM resource is aimed at secondary school students. Students will be encouraged to think about how technology is changing our society. This lesson can be introduced by talking about skeletons. An anatomical skeleton can be used as a prop. Do you know what can be done when joints wear out in our skeletons? Students will be divided into teams and asked to come up with a list of body parts that can be replaced with prosthetic devices. Each team will explain their results to the rest of the class. Students can vote for the device they think is most likely to be made in the future. This activity will take roughly 15 minutes to complete. The engineering context The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. The resources within this, and the related activities, encourage students to investigate the properties of smart materials and carry out some data manipulation. Students will also explore the possible moral and ethical issues associated with people potentially choosing to replace healthy body parts with artificial prostheses because they offer higher performance. Suggested learning outcome By the end of this activity students will be able to explain what joints are and how they work. They will also be able to suggest links between modern technology and health. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Smart cycle - DIY Challenge Day
IETEducationIETEducation

Smart cycle - DIY Challenge Day

(0)
In this fun STEM activity for secondary school students, learners are challenged to design and create a prototype Smart Beacon which will be used to communicate information to cyclists. When used, together with other Beacons, along a route, cyclists will be able to identify a safe cycling route which they can use. The Beacon must contain electronic components to allow it to communicate information to cyclists. This may be done by reacting to external conditions e.g., light or temperature and then sending a signal to the cyclists who pass it on their route. The aim of this challenge is to introduce students to technology which engineers use and will be using in the future. This challenge will work best if you have access to 3D printers at your school or a local venue. The use of 3D printers can be substituted for making prototypes out of cardboard, as many conceptual designs are created by engineers. However, running this challenge could be a great opportunity to make links with a local university, college or industry. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), this fun challenge encourages the development of students’ problem solving, team working and communication skills. This activity can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates. Student booklet Available an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation. Film clips and sound effects The engineering context More and more people are taking to cycling for competition, personal transport and leisure. The benefits of cycling are obvious; it is enjoyable, cost effective, improves fitness and is a sustainable way to travel. IET Faraday® DIY Challenge Day We have provided a set of printable resources and guidelines notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. Download all documents for free! All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation
Design a football pitch
IETEducationIETEducation

Design a football pitch

(0)
Designing a football arena for the moon In this activity learners will make use of the theme of football on the moon to design a future football stadium for playing the game on the moon. They will think about the main design considerations and requirements for the stadium. They will then learn how to draw a football pitch step by step and produce annotated sketches of their idea. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology, Graphic Design and Engineering. This resource focusses on learners designing a stadium for playing football on the moon. The teacher will introduce the theme of playing football on the moon, before introducing and discussing the design brief with learners. Learners will then have time to research and design their stadia for playing football on the moon. This activity can be simplified (particularly for less able students) by providing partially completed arena designs for weaker learners to add to and improve and/or providing card or paper cut outs of different arena elements that they could assemble to produce a finished design. As an extension learners can introduce vector illustration to their design or make a card scale model of the stadium and/or design a stadium for playing other sports on the moon, such as athletics, rugby, cricket or netball. How would the requirements of these differ from football? This activity is designed to take between 50-70 minutes. Tools/resources required Pens or pencils Coloured pencils Rulers Paper Computer and internet for research The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit, how will we develop the facilities to live happy, healthy and fulfilling lives? Suggested learning outcomes By the end of this free resource students will be able to understand the main considerations when designing sports stadia; design a stadium for playing football on the moon; and present design ideas as annotated sketches. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.